游客
题文

(本小题满分12分)
某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距的距离都超过的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内.现从这次射击成绩中随机抽取两次射击的成绩(记为)进行技术分析.求事件“”的概率.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:OF//平面ACD;
(Ⅱ)在上是否存在点,使得平面平面ACD?若存在,试指出点的位置;若不存在,请说明理由.

已知点是函数图象上的任意两点,若时,的最小值为,且函数的图像经过点
(Ⅰ)求函数的解析式;
(Ⅱ)在中,角的对边分别为,且,求的取值范围.

某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线题,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得2分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.
(Ⅰ)设三种消防工具分别为,其用途分别为,若把连线方式表示为,规定第一行的顺序固定不变,请列出所有连线的情况;
(Ⅱ)求某参赛者得分为0分的概率.

将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

已知函数,讨论的单调性.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号