(本小题满分12分)
某射击运动员进行射击训练,前三次射击在靶上的着弹点刚好是边长为
的等边三角形的三个顶点.
(Ⅰ)第四次射击时,该运动员瞄准区域射击(不会打到
外),则此次射击的着弹点距
的距离都超过
的概率为多少?(弹孔大小忽略不计)
(Ⅱ) 该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间
内.现从这
次射击成绩中随机抽取两次射击的成绩(记为
和
)进行技术分析.求事件“
”的概率.
如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:OF//平面ACD;
(Ⅱ)在上是否存在点
,使得平面
平面ACD?若存在,试指出点
的位置;若不存在,请说明理由.
已知点是函数
图象上的任意两点,若
时,
的最小值为
,且函数
的图像经过点
.
(Ⅰ)求函数的解析式;
(Ⅱ)在中,角
的对边分别为
,且
,求
的取值范围.
某学校为了增强学生对消防安全知识的了解,举行了一次消防安全知识竞赛.其中一道题是连线题,要求将3种不同的消防工具与它们的用途一对一连线,规定:每连对一条得2分,连错一条扣1分,参赛者必须把消防工具与用途一对一全部连起来.
(Ⅰ)设三种消防工具分别为,其用途分别为
,若把
连线方式表示为
,规定第一行
的顺序固定不变,请列出所有连线的情况;
(Ⅱ)求某参赛者得分为0分的概率.
将边长为的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?
已知函数,讨论
的单调性.