如图,四边形DEFG是ΔABC的内接矩形,如果ΔABC的高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,求y关于x的函数关系式.
在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6.
(1)求此抛物线的解析式;
(2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;
(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.
阅读下面材料:
问题:如图①,在△ABC中, D是BC边上的一点,若∠BAD=∠C=2∠DAC=45°,DC=2.求BD的长.
小明同学的解题思路是:利用轴对称,把△ADC进行翻折,再经过推理、计算使问题
得到解决.
(1)请你回答:图中BD的长为;
(2)参考小明的思路,探究并解答问题:如图②,在△ABC中,D是BC边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD和AB的长.
根据对北京市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的
甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数
的图象如图②所示.
(1)分别求出y1、y2与x之间的函数关系式;
(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少?
为了了解北京市的绿化进程,小红同学查询了首都园林绿化政务网,根据网站发布的近几年北京市城市绿化资源情况的相关数据,绘制了如下统计图(不完整):
(1)请根据以上信息解答下列问题:
① 2010年北京市人均公共绿地面积是多少平方米(精确到0.1)?
② 补全条形统计图;
(2)小红同学还了解到自己身边的许多同学都树立起了绿色文明理念,从自身做起,多种树,为提高北京市人均公共绿地面积做贡献. 她对所在班级的40名同学2011年参与植树的情况做了调查,并根据调查情况绘制出如下统计表:
种树棵数(棵) |
0 |
1 |
2 |
3 |
4 |
5 |
人数 |
10 |
5 |
6 |
9 |
4 |
6 |
如果按照小红的统计数据,请你通过计算估计,她所在学校的300名同学在2011年共植树多少棵.
如图,在△ABC中,点D在AC上,DA=DB,∠C=∠DBC,以AB为直径的交AC于点E,F是
上的点,且AF=BF.
(1)求证:BC是的切线;
(2)若sinC=,AE=
,求sinF的值和AF的长.