已知函数f(x)=x3-2x2+ax(x∈R,a∈R),在曲线y=f(x)的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)上任一点处的切线的倾斜角为θ,求θ的取值范围
如图,菱形的边长为4,
,
.将菱形
沿
对角线折起,得到三棱锥
,点
是棱
的中点,
.
(1)求证:OM∥平面ABD;
(2)求证:平面DOM⊥平面ABC
(3)求三棱锥B﹣DOM的体积.
已知直线
(1)若直线的斜率等于2,求实数
的值;
(2)若直线分别与x轴、y轴的正半轴交于A、B两点,O是坐标原点,求△AOB面积的最大值及此时直线的方程.
(本小题满分14分)已知函数,
(a为实数).
(1) 当a=5时,求函数在
处的切线方程;
(2) 求在区间[t,t+2](t >0)上的最小值;
(Ⅲ) 若存在两不等实根,使方程
成立,求实数a的取值范围.
(本小题满分13分) 已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和
,且|
|=2,点(1,
)在该椭圆上.
(1)求椭圆C的方程;
(2)过的直线
与椭圆C相交于A,B两点,若
A
B的面积为
,求以
为圆心且与直线
相切圆的方程.
(本小题满分12分) 如图,在四棱锥中,
,
,
平面
,
为
的中点,
.
(1)求证:∥平面
;
(2)求四面体的体积.