如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,.(1)求证:OM∥平面ABD;(2)求证:平面DOM⊥平面ABC(3)求三棱锥B﹣DOM的体积.
. 已知关于x的方程2x2-(+1)x+m=0的两根为sinθ和cosθ,θ∈(0,2π),求:(1)的值; (2)m的值; (3)方程的两根及此时θ的值.
. 设平面内的向量点是直线上的一个动点,求当取最小值时,的坐标及的余弦值。
. 设y="A" sin(ωx+j)(A>0,ω>0,|j|<π)最高点D的坐标为(2,),由最高点运动到相邻的最低点时,曲线与轴交点E的坐标为(6,0),(1)求A、ω、j的值;(2)求出该函数的频率,初相和单调区间.
. 已知,,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?
. 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号