.
设平面内的向量点
是直线
上的一个动点,求当
取最小值时,
的坐标及
的余弦值。
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近视地表示为,已知此生产线的年产量最大为210吨.
(Ⅰ) 求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(Ⅱ)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图, 三棱柱ABC-A1B1C1中, 侧棱A1A⊥底面ABC,且各棱长均相等. D, E, F分别为棱AB, BC, A1C1的中点.
(Ⅰ) 证明EF//平面A1CD;
(Ⅱ) 证明平面A1CD⊥平面A1ABB1;
(Ⅲ) 求直线BC与平面A1CD所成角的正弦值.
定义域为的奇函数
满足
,且当
时,
.
(Ⅰ)求在
上的解析式;
(Ⅱ)当取何值时,方程
在
上有解?
已知,设
:函数
在
上单调递减,
:曲线
与
轴交于不同的两点。若“
”为假命题,“
”为真命题,求
的取值范围。
已知函数,
.
(Ⅰ)若,求函数
在区间
上的最值;
(Ⅱ)若恒成立,求
的取值范围.
注:是自然对数的底数