已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时的解析式为f(x)=-(a∈R).
(1)写出f(x)在(0,1]上的解析式;
(2)求f(x)在(0,1]上的最大值.
(本小题满分14分)已知集合,
.
(1)当时,求
;
(2)若,求实数
的取值范围.
(本小题满分14分)(1)已知,求实数
的值;
(2)已知,若
是纯虚数,求
(本小题满分14分)已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R.
(1)若命题q为真,求实数m的取值范围.
(2)若命题“p且q”和“非p”为假,求实数m的取值范围
设正项数列{an}(n≥5)对任意正整数k(k≥3)恒满足:,且
.
(1)求数列{an}的通项公式;
(2)是否存在整数,使得
对于任意正整数n恒成立?若存在,求出
的值;若不存在,说明理由。(注:
)
一个正方形花圃,被分为n()份,种植红、黄、蓝、绿4种颜色不同的花,要求相邻两部分种植不同颜色的花。
(1)如图1,正方形被分为3份A、B、C,有多少种不同的种植方法?
(2)如图2,正方形被分为4份A、B、C、D,有多少种不同的种植方法?
(3)如图3,正方形被分为5份A、B、C、D、E,有多少种不同的种植方法?