一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时同发,设慢车行驶的时间为x(h),两车之间的距离为y(km),途中的折线表示y与x之间的函数关系,根据图像进行以下探究:
(1)甲、乙两地的距离为____km;
(2)请解释图中点B实际意义;
(3)求慢车与快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
已知在Rt△ABC,AB=AC,∠BAC=90°,过A的任一条直线AN,BD⊥AN于D,CE⊥AN于E。
(1)求证:DE=BD-CE
(2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN于E,那么DE、DB、CE之间存在等量关系吗?若存在,请证明你的结论?
已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.
求证:(1)△ABC≌△DEF (2)BE=CF.
如图,点C、D在△ABE的边BE上,且AB=AE,AC=AD,求证: BC=DE。
已知关于x的一元二次方程x2+(m+3)x+m+1=0.
(1)求证:无论m取何值,原方程总有两个不相等的实数根;
(2)若x1、x2是原方程的两根,且|x1-x2|=2,求m的值和此时方程的两根.
某科技开发公司研制出一种新型产品,每件产品的成本为2400 元,销售单价定为3000 元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000 元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10 元,但销售单价均不低于2600 元.
(1)商家一次购买这种产品多少件时,销售单价恰好为2600 元?
(2)设商家一次购买这种产品x 件,开发公司所获的利润为y 元,求y(元)与x(件)之间的函数关系式,并写出自变量x 的取值范围.
(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)