一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时同发,设慢车行驶的时间为x(h),两车之间的距离为y(km),途中的折线表示y与x之间的函数关系,根据图像进行以下探究:
(1)甲、乙两地的距离为____km;
(2)请解释图中点B实际意义;
(3)求慢车与快车的速度;
(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
如图1,在菱形 中, , ,点 从点 出发,以每秒1个单位长度的速度沿着射线 的方向匀速运动,设运动时间为 (秒 ,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .
(1)求证: ;
(2)当 秒时, 的长度有最小值,最小值等于 ;
(3)如图2,连接 、 、 交 、 于点 、 ,当 为何值时, 是直角三角形?
(4)如图3,将线段 绕点 顺时针旋转一个角 ,得到对应线段 .在点 的运动过程中,当它的对应点 位于直线 上方时,直接写出点 到直线 的距离 关于时间 的函数表达式.
如果三角形三边的长 、 、 满足 ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.
(1)如图1,已知两条线段的长分别为 、 .用直尺和圆规作一个最短边、最长边的长分别为 、 的“匀称三角形”(不写作法,保留作图痕迹);
(2)如图2, 中, ,以 为直径的 交 于点 ,过点 作 的切线交 延长线于点 ,交 于点 ,若 ,判断 是否为“匀称三角形”?请说明理由.
如图1,一次函数 的图象与 轴交于点 ,与反比例函数 的图象交于点 .
(1) ; ;
(2)点 是线段 上的动点(与点 、 不重合),过点 且平行于 轴的直线 交这个反比例函数的图象于点 ,求 面积的最大值;
(3)将(2)中面积取得最大值的 沿射线 方向平移一定的距离,得到△ ,若点 的对应点 落在该反比例函数图象上(如图 ,则点 的坐标是 .
现如今,通过微信朋友圈发布自己每天行走的步数,已成为一种时尚,“健身达人”小张为了了解他的微信朋友圈里大家的运动情况,随机抽取了部分好友进行调查,把他们6月9日那天每天行走的步数情况分为五个类别: 步)(说明:“ ”表示大于等于0,小于等于4000,下同), 步), 步), 步), 步及以上),并将统计结果绘制了如图1的图2两幅不完整的统计图.
请你根据图中提供的信息解答下列问题:
(1)将图1的条形统计图补充完整;
(2)已知小张的微信朋友圈里共500人,请根据本次抽查的结果,估计在他的微信朋友圈里6月9日那天行走不超过8000步的人数.