设曲线y=x2+x+1-ln x在x=1处的切线为l,数列{an}中,a1=1,且点(an,an+1)在切线l上.
(1)求证:数列{1+an}是等比数列,并求an;
(2)求数列{an}的前n项和Sn.
将曲线绕坐标原点按逆时针方向旋转45°,求所得曲线的方程.
(本题满分16分)对于数列,若存在常数M>0,对任意
,恒有
,则称数列
为
数列.
求证:⑴设是数列
的前n项和,若
是
数列,则
也是
数列.
⑵若数列都是
数列,则
也是
数列.
(本题满分16分)
一束光线从点出发,经过直线
上的一点D反射后,经过点
.
⑴求以A,B为焦点且经过点D的椭圆C的方程;
⑵过点作直线
交椭圆C于P、Q两点,以AP、AQ为邻边作平行四边形APRQ,求对角线AR长度的取值范围。
(本题满分15分)
在中,三边a,b,c满足:
.
⑴探求的最长边;
⑵求的最大角.
(本题满分15分)
已知三次函数的最高次项系数为a,三个零点分别为
.
⑴ 若方程有两个相等的实根,求a的值;
⑵若函数在区间
内单调递减,求a的取值范围.