(本小题满分为12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了名学生。调査结果表明:在爱看课外书的
人中有
人作文水平好,另
人作文水平一般;在不爱看课外书的
人中有
人作文水平好,另
人作文水平一般.
(Ⅰ)试根据以上数据建立一个列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文
水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为,某
名爱看
课外书且作文水平一般的学生也分别编号为
,从这两组学生中各任选
人进行学习交流,求被选取的两名学生的编号之和为
的倍数或
的倍数的概率.
附:
临界值表:
![]() |
0. 10 |
0. 05 |
0. 025 |
0.010 |
0. 005 |
0. 001 |
![]() |
2. 706 |
3. 841 |
5. 024 |
6. 635 |
7. 879 |
10. 828 |
已知点、
,若动点
满足
.
(1)求动点的轨迹曲线
的方程;
(2)在曲线上求一点
,使点
到直线:
的距离最小.
数列的各项均为正数,
为其前
项和,对于任意的
,总有
成等差数列.
(1)求;
(2)求数列的通项公式;
(3)设数列的前
项和为
,且
,求证:对任意正整数
,总有
在边长为的正方形
中,
分别为
的中点,
分别为
的中点,现沿
折叠,使
三点重合,重合后的点记为
,构成一个三棱锥.
(1)请判断与平面
的位置关系,并给出证明;
(2)证明平面
;
(3)求四棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
高校 |
相关人数 |
抽取人数 |
A |
18 |
![]() |
B |
36 |
2 |
C |
54 |
![]() |
(1)求,
;
(2)若从高校B、C抽取的人中选2人作专题发言,
求这2人都来自高校C的概率.
已知函数,
(1)求的值;
(2)若,且
,求
.