游客
题文

(本小题满分为12分)
某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了名学生。调査结果表明:在爱看课外书的人中有人作文水平好,另人作文水平一般;在不爱看课外书的人中有人作文水平好,另人作文水平一般.
(Ⅰ)试根据以上数据建立一个列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?
(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为,某名爱看课外书且作文水平一般的学生也分别编号为,从这两组学生中各任选人进行学习交流,求被选取的两名学生的编号之和为的倍数或的倍数的概率.
附:
临界值表:


0. 10
0. 05
0. 025
0.010
0. 005
0. 001

2. 706
3. 841
5. 024
6. 635
7. 879
10. 828

 

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

.△ABC的三个角A,B,C所对的边分别是a,b,c,向量=(2,-1),=(sinBsinC,
+2cosBcosC),且。⑴求角A的大小。⑵现给出以下三个条件:①B=45º;②2sinC-(
+1)sinB=0;③a=2。试从中再选择两个条件以确定△ABC,并求出所确定的△ABC的面积。

.将编号为1,2,3的三个小球随意放入编号为1,2,3的三个纸箱中,每个纸箱内有且只有一个小球,称此为一轮“放球”,设一轮“放球”后编号为i(i=1,2,3)的纸箱放入的小球编号为ai,定义吻合度误差为=|1-a1|+|2-a2|+|3-a3|。假设a1,a2,a3等可能地为1、2、3的各种排列,求⑴某人一轮“放球”满足=2时的概率。⑵的数学期望。

(本小题满分14分)
已知函数).
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.
如果在曲线上存在点,使得:①;②曲线在点处的切线平行
于直线,则称函数存在“中值相依切线”.试问:函数是否存在“中值相依切
线”,请说明理由.

(本小题满分13分)
已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(Ⅰ)求的通项公式。
(Ⅱ)令的前n项和

(本小题满分12分)已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.(I)求椭圆的标准方程;(Ⅱ)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号