(本小题满分12分)已知椭圆的焦点,过作垂直于轴的直线被椭圆所截线段长为,过作直线l与椭圆交于A、B两点.(I)求椭圆的标准方程;(Ⅱ)是否存在实数使,若存在,求的值和直线的方程;若不存在,说明理由.
(本小题满分10分) 若,求的取值范围.
(本小题满分12分) 已知函数f (x)是正比例函数,函数g (x)是反比例函数,且f(1)=1,g(1)=2, (1)求函数f (x)和g(x); (2)判断函数f (x)+g(x)的奇偶性. (3)求函数f (x)+g(x)在(0,]上的最小值.
(本小题满分12分) 设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.
(本小题满分12分) 设函数y=f (x)=在区间 (-2,+∞)上单调递增,求a的取值范围.
(本小题满分12分) 设,其中,如果,求实数的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号