围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
已知递增的等比数列的前三项之积为512,且这三项分别减去1,3,9后又成等差数列,求数列的通项公式,并求数列的前n项和.
求=.
已知数列中,a1=8,a4=2且满足an+2=2an+1-an,(n∈N*) (1)求数列的通项公式;(2)设=|a1|+|a2|+…+|an|,求.
已知数列的前n项和为,且,求的值.
济南市有大明湖、趵突泉、千佛山、园博园4个旅游景点,一位客人浏览这四个景点的概率分别是0.3,0.4,0.5,0.6,且客人是否游览哪个景点互不影响,设表示客人离开该城市时游览的景点数与没有游览的景点数之差的绝对值。 (1)求=0对应的事件的概率; (2)求的分布列及数学期望。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号