某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
资 金 |
|
|
|
|
单位产品所需资金(百元) |
|
|
|
|
空调机 |
洗衣机 |
|
月资金供应量 (百元) |
|
成 本 |
30 |
20 |
300 |
|
劳动力(工资) |
5 |
10 |
110 |
|
单位利润 |
6 |
8 |
|
|
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
(本小题满分13分)
给定两个命题,:对任意实数
都有
恒成立;
:关于
的方程
有实数根.如果
∨
为真命题,
∧
为假命题,求实数
的取值范围.
((本小题满分12分)
已知,
,若
是
的必要不充分条件,求实数m的取值范围.
(本小题满分12分)
若一动点F到两定点、
的距离之和为4.
(Ⅰ)求动点F的轨迹方程;
(Ⅱ)设动点F的轨迹为曲线C,在曲线C任取一点P,过点P作轴的垂线段PD,D为垂足,当P在曲线C上运动时,线段PD的中点M的轨迹是什么?
(本小题满分11分)
从含有两件正品,
和一件次品
的3件产品中每次任取一件,连续取两次,每次取出后放回,求取出的两件产品中恰有一件是次品的概率.
(示范高中)如图,已知椭圆(a>b>0)的离心率
,过点
和
的直线与原点的距离为
.
(1)求椭圆的方程;
(2)已知定点,若直线
与椭圆交于
、
两点.问:是否存在
的值,使以
为直径的圆过
点?请说明理由.