某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:
资 金 |
|
|
|
|
单位产品所需资金(百元) |
|
|
|
|
空调机 |
洗衣机 |
|
月资金供应量 (百元) |
|
成 本 |
30 |
20 |
300 |
|
劳动力(工资) |
5 |
10 |
110 |
|
单位利润 |
6 |
8 |
|
|
试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?
选修4-5:不等式选讲
已知,
.
(I)求证:,
;
(II)若,求证:
选修4-4:坐标系与参数方程
在极坐标系中, O为极点, 半径为2的圆C的圆心的极坐标为.
⑴求圆C的极坐标方程;
⑵是圆
上一动点,点
满足
,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
选修4-1:几何证明选讲
如图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
设函数.
(Ⅰ)求的单调区间和极值;
(Ⅱ)是否存在实数,使得关于
的不等式
的解集为
?若存在,求
的取值范围;若不存在,试说明理由.
设椭圆E: (a,b>0)过M(2,
) ,N(
,1)两点,O为坐标原点,
(I)求椭圆E的方程;
(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由