如右图所示,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.(1)求三棱锥E—PAD的体积;(2)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(3)证明:无论点E在边BC的何处,都有PE⊥AF.
设双曲线的两个焦点分别为,离心率为. (I)求此双曲线的渐近线的方程; (II)若分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线.
如图,已知正三角形底面,其中 且, (I)求证:平面 (II)求四棱锥的体积 (III)求与底面所成角的余弦值(文科) 求二面角的余弦值(理科)
、已知直线与曲线相交于两点,若,求的值.
(I)若椭圆的焦点为,且经过点,求椭圆的标准方程. (II)求过点的双曲线的标准方程.
(本小题满分10分) 已知函数,设关于的方程的两实数根为,的两实根为、,且. (1)若均为负整数,求解析式; (2)若,求的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号