设M点的坐标为(x,y).
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中取随机取一个数作为y,求M点落在y轴的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
,所表示的平面区域内的概率
直四棱柱中,底面
是等腰梯形,
,
,
为
的中点,
为
中点.
(1) 求证:;
(2) 若,求
与平面
所成角的正弦值.
已知函数
(I)求函数的最小值和最小正周期;
(II)已知内角
,
,
的对边分别为
,
,
,且
,若向量
共线,求
的值。
..(本小题满分14分)定义在上的函数
,如果满足;对任意
,存在常数
,都有
成立,则称
是
上的有界函数,其中
称为函数
的上界.已知函数
.
(Ⅰ)当时,求函数
在
上的值域,并判断函数
在
上是否为有界函数,请说明理由;
(Ⅱ)若是
上的有界函数,且
的上界为3,求实数
的取值范围;
(Ⅲ)若,求函数
在
上的上界
的取值范围.
..(本小题满分14分)坐标法是解析几何中最基本的研究方法,坐标法是以坐标系为桥梁,把几何问题转化成代数问题,通过代数运算研究几何图形性质的方法.请利用坐标法解决以下问题:
(Ⅰ)在直角坐标平面内,已知,对任意
,试判断
的形状;
(Ⅱ)在平面内,已知中,
,
为
的中点,
交
于
,求证:
.
.(本小题满分13分)一个几何体的直观图及三视图如图所示,分别是
的中点.
(Ⅰ)写出这个几何体的名称;
(Ⅱ)求证:;
(Ⅲ)求多面体的体积.