(本小题满分14分)
如图,已知曲线与曲线
交于点
.直线
与曲线
分别相交于点
.
(Ⅰ)写出四边形的面
积
与
的函数关系
;
(Ⅱ)讨论的单调性,并求
的最大值.
(本小题满分13分)某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
(Ⅰ)能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
(Ⅱ)4名成员随机分成两组,每组2人,一组负责收集成绩,另一组负责数据处理。求学生甲分到负责收集成绩组,学生乙分到负责数据处理组的概率。
![]() |
0.010 |
0.005 |
0.001 |
![]() |
6.635 |
7.879 |
10.828 |
附:
(满分10分)已知复数满足:
(1)求并求其在复平面上对应的点的坐标;
(2)求的共轭复数E:\WCFUpload\Upload\2015-08\04\04891303-8df8-452b-8372-8b1d9afe39e5\ http:\\
(满分10分)(1)用分析法证明:当时,
;
(2)设是两个不相等的正数,若
,用综合法证明:
(本题13分)为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:平均每天喝500ml以上为常喝,体重超过50kg为肥胖。
常喝 |
不常喝 |
合计 |
|
肥胖 |
2 |
||
不肥胖 |
18 |
||
合计 |
30 |
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为。
(1)请将上面的列联表补充完整
(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由
(3)现从常喝碳酸饮料且肥胖的学生中(2名女生),抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
![]() |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
![]() |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
(参考公式:,其中
)
(本题13分)一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
投入促销费用x(万元) |
2 |
3 |
5 |
6 |
商场实际营销额y(万元) |
100 |
200 |
300 |
400 |
(1)在下面的直角坐标系中,画出上述数据的散点图,并据此判断两个变量是否具有较好的线性相关性;
(2)求出x,y之间的回归直线方程=
x+
;
(3)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?