某小组学生举行毕业联欢会,人员到齐后大家彼此握手,其中有2名学生各握了3次手后提前离开,其他学生都彼此握了手.若知握手的总次数为83次,试问该小组共有多少名学生?
如图,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F为CD中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.
某学校有甲、乙、丙三名学生报名参加2012年高校自主招生考试,三位同学通过自主招生考试考上大学的概率分别是,且每位同学能否通过考试时相互独立的。
(Ⅰ)求恰有一位同学通过高校自主招生考试的概率;
(Ⅱ)若没有通过自主招生考试,还可以参加2012年6月的全国统一考试,且每位同学通过考试的概率均为,求这三位同学中恰好有一位同学考上大学的概率。
在中,角
的对边分别为
.
(Ⅰ)若,求角
的大小;
(Ⅱ)若,求
的值.
已知椭圆的长轴长为
,离心率为
,
分别为其左右焦点.一动圆过点
,且与直线
相切.
(1)求椭圆及动圆圆心轨迹
的方程;
(2) 在曲线上有两点
、
,椭圆
上有两点
、
,满足
与
共线,
与
共线,且
,求四边形
面积的最小值.
已知函数,
.
(1)当时,求曲线
在点
处的切线方程;
(2)若在区间
上是减函数,求
的取值范围.