为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组别 |
频数 |
频率 |
145.5~149.5 |
1 |
0.02 |
149.5~153.5 |
4 |
0.08 |
153.5~157.5 |
20 |
0.40 |
157.5~161.5 |
15 |
0.30 |
161.5~165.5 |
8 |
0.16 |
165.5~169.5 |
m |
n |
合 计 |
M |
N |
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图
(3)全体女生中身高在哪组范围内的人数最多?
(本小题满分16分)已知函数有且只有一个零点,其中a>0.
(1)求a的值;
(2)若对任意的,有
恒成立,求实数k的最小值;
(3)设,对任意
,
证明:不等式恒成立.
(本小题满分16分)已知函数.
(1)若,解方程
;
(2)若函数在
上单调递增,求实数
的取值范围;
(3)若函数在
上的最小值为6,求实数
的值.
如图,在平面直角坐标系中,已知四边形
是等腰梯形,
,点
满足
,点
在线段
上运动(包括端点).
(1)求的余弦值;
(2)是否存在实数,使
,若存在,求出满足条件的实数
的取值范围,若不存在,请说明理由.
(本小题满分14分)某实验室某一天的温度(单位:)随时间t(单位:h)的变化近似满足函数关系:
,
.
(1)求实验室这一天里,温度降低的时间段;
(2)若要求实验室温度不高于10,则在哪段时间实验室需要降温?
已知函数.
(1)求函数单调区间;
(2)若在区间上,
恒成立,求实数
的取值范围.