甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求甲获得这次比赛胜利的概率;
(2)求经过5局比赛,比赛结束的概率.
如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:
(1)BF∥HD1;
(2)EG∥平面BB1D1D;
(3)平面BDF∥平面B1D1H.
如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.
如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH,CD∥平面EFGH.
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
如图所示,平面∥平面
,点A∈
,C∈
,点B∈
,D∈
,点E,F分别在
线段AB,CD上,且AE∶EB=CF∶FD.
(1)求证:EF∥;
(2)若E,F分别是AB,CD的中点,AC=4,BD=6,且AC,BD所成的角为60°,
求EF的长.
已知P为△ABC所在平面外一点,G1、G2、G3分别是△PAB、△PCB、△PAC的重心.
(1)求证:平面G1G2G3∥平面ABC;
(2)求S△∶S△ABC.