(本小题满分12分)
如图,设是单位圆和
轴正半轴的交点,
是单位圆上的两点,
是坐标原点,
,
.
(Ⅰ)若,求
的值;
(Ⅱ)设函数,求
的值域.
(本小题满分12分)已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R)
(1)求证:函数图象交于不同的两点;
(2)设(1)问中交点为,求线段AB在x轴上的射影A1B1的长的取值范围。
(选修4—5:不等式选讲)设函数
(1)若解不等式
;
(2)如果,
,求
的取值范围。
(选修4—4:坐标系与参数方程)若两条曲线的极坐标方程分别为=l与
=2cos(θ+)们相交于A,B两点,求线段AB的长。
(选修4—1:几何证明选讲)已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长。
(本小题满分12分)设,其中
,且
(
为自然对数的底)
(1)求的关系;
(2)在其定义域内的单调函数,求
的取值范围;
(3)求证:(i)
(ii)(
)。