已知在直四棱柱ABCD-A1B1C1D1中,底面ABCD为直角梯形,且满足AD⊥AB,BC∥AD,AD=16,AB=8,BB1=8.E,F分别是线段A1A,BC上的点.
(1)若A1E=5,BF=10,求证:BE∥平面A1FD.
(2)若BD⊥A1F,求三棱锥A1-AB1F的体积.
(本小题满分14分)
为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计. 请你根据尚未完成并有局部污损的频率分布表和频数分布直方图,解答下列问题:
(1)填充频率分布表的空格(将答案直接填在表格内);
(2)补全频数条形图;
(3)若成绩在75.5~85.5分的学生为二等奖,问获得二等奖的学生约为多少人?
(本小题满分12分)
本小题满分12分)如图、
是单位圆
上的动点,
是圆与
轴正半轴的交点,设
.
(1)当点的坐标为
时,求
的值;
(2)若,且当点A、B在圆上沿逆时针方向移动时总有
,试求
的取值范围.
(本小题满分14分)已知函数满足:
;(1)分别写出
时
的解析式
和
时
的解析式
;并猜想
时
的解析式
(用
和
表示)(不必证明)(2)当
时,
的图象上有点列
和点列
,线段
与线段
的交点
,求点
的坐标
;
(3)在前面(1)(2)的基础上,请你提出一个点列的问题,并进行研究,并写下你研究的过程
(本小题满分12分)
有一幅椭圆型彗星轨道图,长4cm,高,如下图,
已知O为椭圆中心,A1,A2是长轴两端点,
|
太阳位于椭圆的左焦点F处.
(Ⅰ)建立适当的坐标系,写出椭圆方程,(本小题满分12分)某地一水库年初有水量a(a≥10000),其中含污染物的量为p0(设水与污染物混合均匀),已知该地降水量与月份的关系为而每月流入水库的污水量与蒸发的水量都是r,且此污水中含污染物的量为p(p<r),设当年水库中的水不作它用.
(Ⅰ)求第x月水库中水的含污比g(x)的表达式(含污比=);
(Ⅱ)当p0=0时,求水质量差的月份及此月的含污比.