已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点
且不垂直于x轴直线
与椭圆C相交于A、B两点.
(1)求椭圆C的方程;
(2)求的取值范围;
(3)若B点关于x轴的对称点是E,证明:直线AE与x轴相交于定点.
已知椭圆C的焦点分别为和
,长轴长为6,设直线
交椭圆C于A、B两点,求线段AB的中点坐标
已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围。
已知两点、
,点
为坐标平面内的动点,满足
.
(1)求动点的轨迹方程;
(2)若点是动点
的轨迹上的一点,
是
轴上的一动点,试讨论直线
与圆
的位置关系.
已知数列的前
项和为
,且
,
;数列
中,
点
在直线
上.
(1)求数列和
的通项公式;
(2)设数列的前
和为
,求
;
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?