已知椭圆C:+=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点.点P是⊙O上的动点.
(1)若P(-1,),PA是⊙O的切线,求椭圆C的方程;
(2)是否存在这样的椭圆C,使得是常数?
如果存在,求C的离心率;如果不存在,说明理由.
己知函数的定义域为
, 函数
的值域为
,不等式
的解集为
(1)求A
(2)若同时满足A,B的值也满足C,求
的取值范围;
( 13分)设函数
(1)研究函数的单调性;
(2)判断的实数解的个数,并加以证明.
已知圆,相互垂直的两条直线
、
都过点
.
(Ⅰ)当时,若圆心为
的圆和圆
外切且与直线
、
都相切,求圆
的方程;
(Ⅱ)当时,求
、
被圆
所截得
弦长之和的最大值.
如图,当甲船位于处时获悉,在其正东方向相距20海里的
处有一艘渔船遇险
等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30
,相距10海里
处的乙船.
(Ⅰ)求处于处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线方向前往
处救援,其方向与
成
角,求
的值域.
在公差为的等差数列
和公比为
的等比数列
中,已知
,
.
(Ⅰ)求数列与
的通项公式;
(Ⅱ)是否存在常数,使
得对于一切正整数
,都有
成立?若存在,求出常数
和
,若不存在说明理由