(本小题满分12分)已知向量。
(1)若,求
的值;
(2)在△ABC中,角A、B、C的对边分别是a、b、c,且满足,
求函数的取值范围。
某校高二(17)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:
(1)求全班人数;
(2)求分数在之间的人数;并计算频率分布直方图中
间的矩形的高;
(3)若要从分数在之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在
之间的概率.
设函数的图象经过点
,
(1)求的解析式,并求函数的最小正周期和最大值;
(2)如何由函数的图象得到函数
的图象.
(本小题满分12分)设数列的前
项和为
,已知
,
(
为常数,
),且
成等差数列.
(1) 求的值;
(2) 求数列的通项公式;
(3) 若数列是首项为1,公比为
的等比数列,记
.求证:,(
).
(本小题满分10分)设,若方程
有两个均小于2的不同的实数根,则此时关于
的不等式
是否对一切实数
都成立?并说明理由。
(本小题满分12分)已知:函数是
上的增函数,且过
和
两点,集合
,关于
的不等式
的解集为
.
(1)求集合A;
(2)求使成立的实数
的取值范围.