游客
题文

(本小题满分10分)设,若方程有两个均小于2的不同的实数根,则此时关于的不等式是否对一切实数都成立?并说明理由。

科目 数学   题型 解答题   难度 容易
知识点: 二次剩余
登录免费查看答案和解析
相关试题

已知设p:函数上单调递减,
q:曲线y=与x轴交于不同的两点.若“p且q”为假,“q”为
假,求的取值范围

圆锥曲线上任意两点连成的线段称为弦。若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦。已知点是圆锥曲线C上不与顶点重合的任意两点,是垂直于轴的一条垂轴弦,直线分别交轴于点和点

(1)试用的代数式分别表示
(2)若C的方程为(如图),求证:是与和点位置无关的定值;
(3)请选定一条除椭圆外的圆锥曲线C,试探究经过某种四则运算(加、减、乘、除),其结果是否是与和点位置无关的定值,写出你的研究结论并证明。

各项均为正数的数列的前项和为,满足
(1)求数列的通项公式;
(2)若数列满足
数列满足,数列的前项和为,求
(3)若数列,甲同学利用第(2)问中的,试图确定的值是否可以等于2011?为此,他设计了一个程序(如图),但乙同学认为这个程序如果被执行会是一个“死循环”(即程序会永远循环下去,而无法结束),你是否同意乙同学的观点?请说明理由。

已知关于的不等式,其中
(1)求上述不等式的解;
(2)是否存在实数,使得上述不等式的解集中只有有限个整数?若存在,求出使得中整数个数最少的的值;若不存在,请说明理由。

设函数
(1)当时,求函数的最小值;
(2)当时,试判断函数的单调性,并证明。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号