已知函数.已知函数有两个零点,且.
(1)求的取值范围;
(2)证明随着的减小而增大;
(3)证明随着的减小而增大.
设,
,其中
是常数,且
.
(1)求函数的极值;
(2)证明:对任意正数,存在正数
,使不等式
成立;
(3)设,且
,证明:对任意正数
都有:
.
知数列的首项
前
项和为
,且
(1)证明:数列是等比数列;
(2)令,求函数
在点
处的导数
,并比较
与
的大小.
设椭圆的左右顶点分别为
,离心率
.过该椭圆上任一点
作
轴,垂足为
,点
在
的延长线上,且
.
(1)求椭圆的方程;
(2)求动点的轨迹
的方程;
(3)设直线(
点不同于
)与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
如图所示,已知为圆
的直径,点
为线段
上一点,且
,点
为圆
上一点,且
.点
在圆
所在平面上的正投影为点
,
.
(1)求证:;
(2)求二面角的余弦值.
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:
若将频率视为概率,回答下列问题:
(1)求表中x,y,z的值及甲运动员击中10环的概率;
(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;
(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求
的分布列及