(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).
(1) 若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(2) 求f(x)的单调区间;
(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.
(本小题满分12分)已知函数的图像经过点
,曲线在点
处的切线恰好与直线
垂直.
(I)求实数的值;
(Ⅱ)若函数在区间
上单调递增,求实数
的取值范围.
(本小题满分12分)第11届全国人大五次会议于20 1 2年3月5日至3月1 4日在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和1 4名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(Ⅰ)根据以上数据完成以下2×2列联表:
并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
(参考公式:
参考数据:
(Ⅱ)已知会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随
机抽取2人做同声翻译,则抽出的2人都在俄罗斯工作过的概率是多少?
(本小题满分12分)已知中,
分别为内角
所对的边,且满足
.
(Ⅰ)求;
(Ⅱ)现给出三个条件:① ②
③
.从中选出两个可以确定
的条件,写出你的选择,并以此为依据,求出
的面积.(只需写出一个选定方案并完成即可)
.(本小题满分12分)已知等差数列满足:
,
,
的前n项和为
.
(Ⅰ)求通项公式及前n项和
;
(Ⅱ)令=
(n
N*),求数列
的前n项和
.
(本题满分14分)已知椭圆的右顶点
,过
的焦点且垂直长轴的弦长为
.
(I) 求椭圆的方程;
(II) 设点在抛物线
上,
在点
处的切线与
交于点
.当线段
的中点与
的中点的横坐标相等时,求
的最小值.