(本小题满分12分)已知斜三棱柱,,,在底面上的射影恰为的中点,为的中点,.(I)求证:平面;(II)求二面角余弦值的大小.
各项为正的数列满足,, (1)取,求证:数列是等比数列,并求其公比; (2)取时,令,记数列的前项和为,数列的前项之积为,求证:对任意正整数,为定值.
函数, (1)若时,求的最大值; (2)设时,若对任意,都有恒成立,且的最大值为2,求的表达式.
已知椭圆,离心率,且过点, (1)求椭圆方程; (2)以为直角顶点,边与椭圆交于两点,求面积的最大值.
如图,已知平面,为等边三角形, (1)若平面平面,求CD长度; (2)求直线AB与平面ADE所成角的取值范围.
在中,角,,所对的边分别为,,,已知,,成等比数列,且. (Ⅰ)求角B的大小; (Ⅱ)若,求的面积最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号