(本小题满分12分)已知数列中,,,其前项和为,且当时,.(Ⅰ)求证:数列是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)令,记数列的前项和为,证明对于任意的正整数,都有成立.
已知命题若非是的充分不必要条件,求的取值范围。
命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围。
设,求证:不同时大于.
已知;若是的必要非充分条件,求实数的取值范围。
写出下列命题的“”命题: (1)正方形的四边相等。 (2)平方和为的两个实数都为。 (3)若是锐角三角形, 则的任何一个内角是锐角。 (4)若,则中至少有一个为。 (5)若。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号