(本小题满分12分)已知数列中,,,其前项和为,且当时,.(Ⅰ)求证:数列是等比数列;(Ⅱ)求数列的通项公式;(Ⅲ)令,记数列的前项和为,证明对于任意的正整数,都有成立.
已知等比数列的前项和为,且是与2的等差中项,等差数列中,,点在直线上. ⑴求和的值; ⑵求数列的通项和; ⑶ 设,求数列的前n项和.
已知双曲线C:2x2-y2=2与点P(1,2).求过点P(1,2)的直线l的斜率k的取值范围,使l与C只有一个交点;
已知椭圆的长轴长是短轴长的2倍且经过点A(2,0),求椭圆的标准方程。
在ABC中,已知,,,求.
已知椭圆的中心在原点,焦点为F1,F2(0,),且离心率。 (I)求椭圆的方程; (II)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标 为,求直线l的斜率的取值范围。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号