((本小题满分10分)选修4—4:作标系与参数方程
(1)已知点C 的极坐标为(2,),画图并求出以C为圆心,半径r=2的圆的极坐标
方程(写出解题过程);
(2)P是以原点为圆心,r=2的圆上的任意一点,Q(6,0),M是PQ中点
①画图并写出⊙O的参数方程;
②当点P在圆上运动时,求点M的轨迹的参数方程。
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45º时,求弦AB的长.
对,不等式
所表示的平面区域为
,把
内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成一列点:
(1)求,
(2)若(
为非零常数),问是否存在整数
,使得对任意
,
都有.
设,其导函数
的图像经过点
,且在
时取得极小值
,
(1)求的解析式;
(2)若对都有
恒成立,求实数
的取值范围。
如图,正三棱柱的底面边长为
,侧棱长为
,点
在棱
上.
(1)若,求证:直线
平面
;
(2)若,二面角
平面角的大小为
,求
的值。
、
、
为
的三内角,且其对边分别为a、b、c,若
,
,且
.
(1)求角;
(2)若,三角形面积
,求
的值.