(本小题满分12分)(注意:在试题卷上作答无效)
函数,其图象在
处的切线方程为
.
(Ⅰ)求函数的解析式;
(Ⅱ)若函数的图象与
的图象有三个不同的交点,求实数
的取值范围;
(Ⅲ)是否存在点P,使得过点P的直线若能与曲线围成两个封闭图形,则这两个封闭图形的面积相等?若存在,求出P点的坐标;若不存在,说明理由.
(本小题满分13分)
设函数(
)=2
(
在
处
取得最小值.
(Ⅰ)求的值
;
(Ⅱ)已知函数和函数
(
)关于点(
,
)对称,求函数
的单调增区间.
(本小题满分13分)
等比数列{}的前
项和为
,已知5
、2
、
成等差数列.
(Ⅰ)求{}的公比
;
(Ⅱ)当-
=3且
时,求
.
己知椭圆C:的左、右焦点为
、
,离心率为
。直线
:
与
轴、
轴分别交于点A、B,M是直线
与
椭圆C的一个公共点,P是点
关于直线
的对称点,设
。
(1)证明:
(2)确定的值,使得
是等腰三角形。
如图,已知点,直线
,
为平面上的动点,过
作直线
的垂线,垂足为点
,且
.
(Ⅰ)求动点的轨迹
的方程;
(Ⅱ)过点的直线交轨迹
于
两点,交直线
于点
,
已知,
,求
的值;
直线的右支交于不同的两点A、B.
(1)求实数k的取值范围;
(2)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由