(本小题满分12分)
已知函数最小正周期为
.
(I)求的值及函数
的解析式;
(II)若的三条边
,
,
满足
,
边所对的角为
.求角
的取值范围及函数
的值域.
己知函数
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)设,若对任意
,恒有
,求a的取值范围.
已知抛物线,过点
的直线
交抛物线于A,B两点,坐标原点为O,
.
(1)求抛物线的方程;
(2)当以AB为直径的圆与y轴相切时,求直线的方程.
如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD, ,FC
平面ABCD, AE
BD,CB =CD=-CF.
(Ⅰ)求证:平面ABCD 平面AED;
(Ⅱ)直线AF与面BDF所成角的余弦值
某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求
的分布列和数学期望.
设数列的前n项和为
,满足
,且
.
(Ⅰ)求的通项公式;
(Ⅱ)若成等差数列,求证:
成等差数列.