(满分10分)复数(
),
(Ⅰ)若,求
;
(Ⅱ)若在复平面内复数对应的点在第一象限,求
的范围.
(满分10分)(1)用分析法证明:当时,
;
(2)设是两个不相等的正数,若
,用综合法证明:
(本小题满分13分)已知函数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)求函数的单调区间;
(Ⅲ)若对任意的,都有
成立,求a的取值范围.
(本小题满分13分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗
(吨标准煤)的几组对照数据:
![]() |
3 |
4 |
5 |
6 |
![]() |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于
的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:)
(本小题满分10分)某校高一年级开设,
,
,
,
五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选
课程,不选
课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中
课程的概率;
(Ⅱ)用表示甲、乙、丙选中
课程的人数之和,求
的分布列和数学期望.