已知椭圆:
(
)的离心率
,左、右焦点分别为
、
,点
满足:
在线段
的中垂线上.
(1)求椭圆的方程;
(2)若斜率为(
)的直线
与
轴、椭圆
顺次相交于点
、
、
,且
,求
的取值范围.
若.
(1)求的最小值及对应的
值;
(2)取何值时,
且
已知向量
(1)若,求
的值;
(2)若求
的值;
(3)设,若
求
的值域.
已知椭圆的离心率为
,其左、右焦点分别为
,点
是椭圆上一点,且
,
(
为坐标原点).
(Ⅰ)求椭圆的方程;
(Ⅱ)过点且斜率为
的动直线
交椭圆于
两点,在
轴上是否存在定点
,使以
为直径的圆恒过这个点?若存在,求出
的坐标,若不存在,说明理由.
已知函数,
.
(Ⅰ)当时,求函数
的极值;
(Ⅱ)若函数在区间
上是单调增函数,求实数
的取值范围.
某班同学利用国庆节进行社会实践,对岁的人群随机抽取
人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(Ⅰ)补全频率分布直方图并求、
、
的值;
(Ⅱ)从年龄段在的“低碳族”中采用分层抽样法抽取
人参加户外低碳体验活动,其中选取
人作为领队,求选取的
名领队中恰有1人年龄在
岁的概率.