已知圆M的圆心在直线上,且过点
、
.
(1)求圆M的方程;
(2)设P为圆M上任一点,过点P向圆O:引切线,切点为Q.试探究:
平面内是否存在一定点R,使得为定值?若存在,求出点R的坐标;若不存在,请说
明理由.
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:,
,
,
,
,
.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
已知命题p:关于x的方程x2+ax+a=0有实数解;命题q:﹣1<a≤2.
(1)若¬p是真命题,求实数a的取值范围;
(2)若(¬p)∧q是真命题,求实数a的取值范围.
甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为
.
(Ⅰ)求乙投球的命中率p;
(Ⅱ)求甲投球2次,至少命中1次的概率;
(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率.
已知函数,
,
.
(1)当时,求函数
的单调区间;
(2)若函数在区间
上的最小值是
,求
的值;
(3)设是函数
图象上任意不同的两点,线段
的中点为
,直线
的斜率为
,证明:
.
已知椭圆的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(I)求椭圆的方程;
(II)直线与椭圆交于
两点,
点位于第一象限,
是椭圆上位于直线
两侧的动点.
(i)若直线的斜率为
,求四边形
面积的最大值;
(ii)当点运动时,满足
,问直线
的斜率是否为定值,请说明理由.