游客
题文

(本小题满分12分) 古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n)个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.

现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1) 写出a1a2a3,并求出an
(2) 记,求和);(其中表示所有的积的和)
(3)证明:

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知,函数.
(1)设,将函数表示为关于的函数,求的解析式和定义域;
(2)对任意,不等式都成立,求实数的取值范围.

如图所示,某市政府决定在以政府大楼为中心,正北方向和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正面要朝市政府大楼.设扇形的半径之间的夹角为.

(1)将图书馆底面矩形的面积表示成的函数.
(2)求当为何值时,矩形的面积有最大值?其最大值是多少?(用含R的式子表示)

设平面向量
⑴若,求的值;(2)若,求函数的最大值,并求出相应的值.

已知均为锐角,且
(1)求的值;(2)求的值.

已知是同一平面内的三个向量,其中
(1)若,且,求:的坐标;
(2)若,且垂直,求的夹角;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号