(本小题满分12分) 古代印度婆罗门教寺庙内的僧侣们曾经玩过一种被称为“河内宝塔问题”的游戏,其玩法如下:如图,设有n()个圆盘依其半径大小,大的在下,小的在上套在A柱上,现要将套在A柱上的盘换到C柱上,要求每次只能搬动一个,而且任何时候不允许将大盘套在小盘上面,假定有三根柱子A、B、C可供使用.
现用an表示将n个圆盘全部从A柱上移到C柱上所至少需要移动的次数,回答下列问题:
(1) 写出a1,a2,a3,并求出an;
(2) 记,求和
(
);(其中
表示所有的积
的和)
(3)证明:
某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下图所示.
(Ⅰ)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(Ⅱ)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(Ⅲ)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求:第4组至少有一名学生被考官A面试的概率?
已知直线经过两点
,
.
(1)求直线的方程;
(2)圆的圆心在直线
上,并且与
轴相切于
点,求圆
的方程.
已知实数
满足
,其中
;
实数
满足:
.
(1)若且
为真,求实数
的取值范围;
(2)若是
的必要不充分条件,求实数
的取值范围.
已知直线,求
的值,使得
(1);
(2)∥
(本小题满分12分)已知函数.
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若关于的方程
在
]上有两个不同的解,求实数
的取值范围.