如图,PA垂直于矩形ABCD所在的平面,PD=PA,E、F分别是AB、PD的中点。
(1)求证:AF∥平面PCE;
(2)求证:平面PCE⊥平面PCD。
(本小题满分14分)已知函数,其中e为自然对数的底数.
(1)求曲线在点
处的切线方程;
(2)若对任意,不等式
恒成立,求实数m的取值范围;
(3)试探究当时,方程
的解的个数,并说明理由.
(本小题满分13分)已知椭圆,其中
为左、右焦点,且离心率
,直线
与椭圆交于两不同点
.当直线
过椭圆C右焦点F2且倾斜角为
时,原点O到直线
的距离为
.
(1)求椭圆C的方程;
(2)若,当
面积为
时,求
的最大值.
(本小题满分12分)已知数列中,
(1)证明数列是等比数列;
(2)若是数列
的前n项和,求
.
(本小题满分12分)如图,已知四边形ABCD是正方形,平面ABCD,CD=PD=2EA,PD//EA,F,G,H分别为PB,BE,PC的中点.
(1)求证:GH//平面PDAE;
(2)求证:平面平面PCD.
(本小题满分12分)已知函数的最大值为2,且最小正周期为
.
(1)求函数的解析式及其对称轴方程;
(2)若的值.