已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0)。
(1)若,求向量a,c的夹角;
(2)当时,求函数f(x)=2a·b+1的最大值。
已知圆内接△ABC中,D为BC上一点,且△ADC为正三角形,点E为BC的延长线上一点,AE为圆O的切线.
(Ⅰ)求∠BAE 的度数;
(Ⅱ)求证:
(本小题满分12分)已知函数,其中
。
(Ⅰ)讨论函数的单调性;
(Ⅱ)若不等式在
上恒成立,求实数
的取值范围。
【改编】(本小题满分12分)已知椭圆C:过点
,且椭圆C的离心率为
.
(Ⅰ)求椭圆C的方程;
(Ⅱ)为坐标原点,斜率为
的直线过
点,且与点
的轨迹交于点
,
,若
,求△
的面积.
【原创】(本小题满分12分)为调查某市高中男生百米成绩,从该市高中男生中随机抽取20名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组
第五组
,如图是按上述分组方法得到的频率分布直方图.根据有关规定,成绩小于16秒为达标.
(Ⅰ)求这组数据的众数、中位数及达标率(精确到0.01);
(Ⅱ)从这20人中不达标的人员中任取3人,至少二人成绩在16~17之间的概率.
(本小题满分12分)如图,矩形中,
,
,
是
中点,
为
上的点,且
.
(1)求证:;
(2)求三棱锥的体积.