本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为
,
;两小时以上且不超过三小时还车的概率分别为
,
;两人租车时间都不会超过四小时.
(Ⅰ)求出甲、乙所付租车费用相同的概率;
(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量
,求
的分布列与数学期望
.
(本小题满分16分)已知函数.
(Ⅰ)当时,求
在区间
上的最小值;
(Ⅱ)讨论函数的单调性;
(Ⅲ)当时,有
恒成立,求
的取值范围.
(本小题满分16分) 已知椭圆两焦点坐标分别为
,
,一个顶点为
.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)是否存在斜率为的直线
,使直线
与椭圆
交于不同的两点
,满足
. 若存在,求出
的取值范围;若不存在,说明理由.
(本小题满分14分) 某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x∈)名员工从事第三产业,调整后他们平均每人每年创造利润为
万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
(本小题满分14分)在四棱锥中,底面
为直角梯形,
//
,
,
,
,
为
的中点.
(Ⅰ)求证:PA//平面BEF;
(Ⅱ)求证:.
(本小题满分14分) 如图,在△ABC中,∠B=,AB=8,点D在BC边上,且CD=2,cos∠ADC=
.
(1)求sin∠BAD;
(2)求BD,AC的长.