椭圆有两顶点 A - 1 , 0 、 B 1 , 0 ,过其焦点 F 0 , 1 的直线 l 与椭圆交于 C , D 两点,并与 x 轴交于点 P .直线 A C 与直线 B D 交于点 Q .
(Ⅰ)当 C D = 3 2 2 时,求直线 l 的方程;
(Ⅱ)当点 P 异于 A 、 B 两点时,求证: O P ⇀ · O Q ⇀ 为定值.
已知. (1)若,求; (2)若的夹角为60°,求; (3)若,求的夹角.
已知向量,且A为锐角. (1)求角A的大小; (2)求函数的值域.
已知 (1)若,求的值; (2)O为坐标原点,若求的夹角。
设等差数列的前项的和为,且,求: (1)的通项公式及前项的和; (2)
如图(5)所示,已知设是直线上的一点, (其中为坐标原点). (Ⅰ)求使取最小值时的点的坐标和此时的余弦值. (Ⅱ)对于(Ⅰ)中的.若是线段的三等分点,且,与交于点,设试用表示和.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号