某饮料公司招聘一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为
饮料,另外4杯为
饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯
饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令
表示此人选对
饮料的杯数.假设次人对
和
两种饮料没有鉴别能力.
(1)求
的分布列;
(2)求此员工月工资的期望.
(本小题满分10分)
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑
球.现从甲、乙两个盒内各任取2个球.
(1)求取出的4个球均为黑球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求
的分布列,并求其数学期望E(
).
(本小题满分10分)
如图,在四棱锥中,底面ABCD为直角梯形,AB∥CD,∠BAD=90°,PA⊥平面ABCD,AB=1,AD=2,PA=CD=4,求二面角
的余弦值.
D. [选修4-5:不等式选讲](本小题满分10分)
已知是正数,证明:
.
C. [选修4-4:坐标系与参数方程](本小题满分10分)
已知直线的参数方程:
(
为参数)和圆C的极坐标方程:
,判断直线
和⊙C的位置关系.
B. [选修4-2:矩阵与变换](本小题满分10分)
已知二阶矩阵A的属于特征值-1的一个特征向量为,属于特征值3的一个特征向量为
,求矩阵A.