如图,四棱锥 P - A B C D 中,底面 A B C D 为平行四边形, ∠ D A B = 60 ° , A B = 2 A D , P D ⊥ 底面 A B C D .
(1)证明: P A ⊥ B D ;
(2)设 P D = A D = 1 ,求棱锥 D - P B C 的高.
在周长为定值的DDEC中,已知,动点C的运动轨迹为曲线G,且当动点C运动时,有最小值. (1)以DE所在直线为x轴,线段DE的中垂线为y轴建立直角坐标系,求曲线G的方程; (2)直线l分别切椭圆G与圆(其中)于A、B两点,求|AB|的取值范围.
数列的通项,其前n项和为. (1)求; (2)求数列{}的前n项和.
在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面,,,,是的中点. (Ⅰ)求证://平面; (Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
在中,的对边分别为且成等差数列. (1)求B的值; (2)求的范围.
已知求(1);(2).
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号