给定两个命题,:对任意实数
都有
恒成立;
:关于
的方程
有实数根;如果
与
中有且仅有一个为真命题,求实数
的取值范围.
设命题p:函数是R上的减函数,命题q:函数f(x)=x2-4x+3在
上的值域为[-1,3],若“p且q”为假命题,“p或q”为真命题,求
的取值范围.
选修4—5:不等式选讲
已知函数
(1)若不等式的解集为
,求实数a,m的值。
(2)当a =2时,解关于x的不等式
选修4—1:几何证明选讲
如图所示,已知PA是⊙O相切,A为切点,PBC为割线,弦CD//AP,AD、BC相交于 E点,F为CE上一点,且
(1)求证:A、P、D、F四点共圆;
(2)若AE·ED=24,DE=EB=4,求PA的长。
已知,函数
(1)求的极小值;
(2)若在
上为单调增函数,求
的取值范围;
(3)设,若在
(
是自然对数的底数)上至少存在一个
,使得
成立,求
的取值范围.
设椭圆的左、右焦点分别为
,上顶点为
,离心率为
, 在
轴负半轴上有一点
,且
(1)若过三点的圆 恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.