如图,已知椭圆 C 1 的中心在原点 O ,长轴左、右端点 M , N 在 x 轴上,椭圆 C 2 的短轴为 M N ,且 C 1 , C 2 的离心率都为 e ,直线 l ⊥ M N , l 与 C 1 交于两点,与 C 2 交于两点,这四点按纵坐标从大到小依次为 A , B , C , D .
(1)设 e = 1 2 ,求 B C 与 A D 的比值; (2)当 e 变化时,是否存在直线 l ,使得 B O ∥ A N ,并说明理由.
已知、分别是的外接圆和内切圆;证明:过上的任意一点,都可作一个三角形,使得、分别是的外接圆和内切圆.
设的所有排列的集合为;,记,;求.(其中表示集合的元素个数).
在一个圆周上给定十二个红点;求的最小值,使得存在以红点为顶点的个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.
设,; 求证:.
在凸五边形中,已知,且 四点共圆.证明:四点共圆的充分必要条件是.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号