如图所示,过点F(0,1)的直线y=kx+b与抛物线交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1•x2的值
⑶分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.
如图,在对Rt△ABC依次进行轴对称(对称轴为y轴)、一次平移和以O位似中心在同侧缩小为原来的一半的变换后得到△OA′B′.
(1)在坐标系中分别画出轴对称、平移变换后相应的二个图形;
(2)设P(a,b)为△ABC边上任意一点,依次分别写出这三次变换后点 P 对应点的坐标.
在一个木箱中装有卡片共50张,这些卡片共有三种,它们分别标有1、2、3的字样,除此之外其他都相同,其中标有数字2卡片的张数是标有数字3卡片的张数的3倍少8张.已知从箱子中随机摸出一张标有数字1卡片的概率是.
(1)求木箱中装有标1的卡片张数;
(2)求从箱子中随机摸出一张标有数字3的卡片的概率.
已知下面是3个5×5的正方形网格,小正方形边长都为1,A、B两点在小网格的顶点上,位置如图所示.现请你分别在三个网格中各画一个△ABC.要求:
(1)顶点C在网格的顶点上;
(2)工具只用无刻度的直尺;
(3)所画的3个三角形互不全等,但面积都为2.
已知方程的解为x=2,先化简
,再求它的值.
解不等式组,并把解集在数轴上表示出来.