游客
题文

过点 作圆Cx2y2r2()的切线,切点为D,且QD=4.
(1)求r的值;
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且lx轴于点A,交 轴于点B,设,求的最小值(O为坐标原点).

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知二项式
(1)当n=4时,写出该二项式的展开式;
(2)若展开式的前三项的二项式系数的和等于79,则展开式中第几项的二项式系数最大?

A(xA,yA),B(xB,yB)为平面直角坐标系上的两点,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,则称点B为点A的“相关点”,记作:B=f(A).
(1)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;
(2)已知点H(9,3),L(5,3),若点M满足M=f(H),L=f(M),求点M的坐标;
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)为一个定点, 若点Pi满足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCDPD=AB=2, E,F,G分别是PC,PD,BC的中点.

(1)求三棱锥E-CGF的体积;
(2)求证:平面PAB//平面EFG

如图,在矩形ABCD中,AB=4,AD=2,EAB的中点,现将△ADE沿直线DE翻折成△ADE,使平面ADE⊥平面BCDEF为线段AD的中点.

(1)求证:EF//平面ABC
(2)求直线AB与平面ADE所成角的正切值.

已知点P与两个定点O(0,0),A(-3,0)距离之比为.
(1)求点P的轨迹C方程;
(2)求过点M(2,3)且被轨迹C截得的线段长为2的直线方程.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号