为发展旅游经济.我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人.非节假日打4折售票.节假日按团队人数分段定价售票,即m人以下(含m人)的团队接原价售票;超过m人的团队.其中m人仍按原价售票.超过m人部分的游客打b折售票.设某旅游团人数为x人.非节假日购票款为 (元),节假日购票款为
(元).
与x之间的函数图象如图8所示.
(1)观察图象可知:a=______;b=______;m=______;
(2)直接写出与x之间的函数关系式:
(3)某旅行杜导游王娜于5月1日带A团.5月20日(非节假日)带B团都到该景区旅游.共付门票款1900元.A,B两个团队合计50人,求A,B两个团队各有多少人?
如图,双曲线(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).
(1)求k的值;
(2)若点D(3,m)在双曲线上,求直线AD的解析式;
(3)计算△OAB的面积.
已知A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,且x1-x2=-2,x1·x2=3,
,当-3<x<-1时,求y的取值范围.
[探究发现]如图①,已知△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线于点F,当点E是BC的中点时,有AE=EF成立.
[数学思考]某数学兴趣小组在探究AE与EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:
当点E是直线BC上(B,C除外)任意一点时(其他条件不变),结论AE=EF仍然成立.
假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在图②中画出图形,并证明AE=EF.
[拓展应用]当点E在线段BC的延长线上时,若CE=BC,在图③中画出图形,并运用上述结论求出S△ABC︰S△AEF的值.
盐城电视塔是某市标志性建筑之一.如图,在一次数学课外实践活动中,老师要求测电视塔的高度AB.小明在D处用1m高的测角仪CD,测得电视塔顶端A的仰角为30°,然后向电视塔方向水平前进224m到达E处,又测得电视塔顶端A的仰角为60°,求电视塔的高度AB.(取,结果精确到1m)
如图,AB是⊙O的直径,延长AB至P,使BP=OB,BD垂直于弦BC,垂足为点B,点D在PC上.设∠PCB=∠α,∠POC=∠β,求证:.