(本小题满分14分)
某慈善机构举办一次募捐演出,有一万人参加,每人一张门票,每张100元,在演出过程中穿插抽奖活动,第一轮抽奖从这一万张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动,第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个数
,如果
则电脑显示“中奖”,抽奖者获得9000元奖金;否则若电脑显示“谢谢”,则不中奖。
(I)已知小曹在第一轮抽奖中被抽中,求小曹在第二轮抽奖中获奖的概率;
(II)若小叶参加了此次活动,求小叶参加此次活动收益的期望;
(III)若此次募捐除奖品和奖金外,不计其它支出,该机构想获得96万元的慈善款,问该慈善机构此次募捐是否能达到预期目标。
选修4-5:不等式选讲
已知且
,若
恒成立,
(Ⅰ)求的最小值;
(Ⅱ)若对任意的
恒成立,求实数
的取值范围.
选修4-4:坐标系与参数方程
(Ⅰ)求直线(
为参数)的倾斜角的大小.
(Ⅱ)在极坐标系中,已知点,
是曲线
上任意一点,求
的面积的最小值.
选修4-2:矩阵与变换已知矩阵,向量
,
(Ⅰ)求矩阵A的特征值和对应的特征向量;
(Ⅱ)求向量,使得
.
.已知函数
(Ⅰ)当时,求
的值域
(Ⅱ)设,若
在
恒成立,求实数a的取值范围
(III)设,若
在
上的所有极值点按从小到大排成一列
,
求证:
.(本小题满分13分)
以椭圆:
的中心
为圆心,
为半径的圆称为该椭圆的“准圆”.设椭圆
的左顶点为
,左焦点为
,上顶点为
,且满足
,
.
(Ⅰ)求椭圆及其“准圆”的方程;
(Ⅱ)若椭圆的“准圆”的一条弦
(不与坐标轴垂直)与椭圆
交于
、
两点,试证明:当
时,试问弦
的长是否为定值,若是,求出该定值;若不是,请说明理由.