已知四棱锥的底面为直角梯形,
,
底面
,且
,
,
是
的中点。
(Ⅰ)证明:面面
;
(Ⅱ)求与
所成角的余弦值;
(Ⅲ)求面与面
所成二面角的余弦值。
如图,四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD.
(1)求证:AB⊥PD;
(2)若M为PC的中点,求证:PA∥平面BDM.
(本小题满分14分)已知函数.
(1)求的最小正周期;
(2)若将的图像向右平移
个单位,得到函数
的图像,求函数
在区间
上的最大值和最小值.
(本小题满分16分)已知函数有且只有一个零点,其中a>0.
(1)求a的值;
(2)若对任意的,有
恒成立,求实数k的最小值;
(3)设,对任意
,
证明:不等式恒成立.
(本小题满分16分)已知函数.
(1)若,解方程
;
(2)若函数在
上单调递增,求实数
的取值范围;
(3)若函数在
上的最小值为6,求实数
的值.
如图,在平面直角坐标系中,已知四边形
是等腰梯形,
,点
满足
,点
在线段
上运动(包括端点).
(1)求的余弦值;
(2)是否存在实数,使
,若存在,求出满足条件的实数
的取值范围,若不存在,请说明理由.