游客
题文

如图所示,过点F(0,1)的直线y=kxb与抛物线交于M(x1
y1)和N(x2y2)两点(其中x1<0,x2<0).
⑴求b的值.
⑵求x1x2的值
⑶分别过MN作直线ly=-1的垂线,垂足分别是M1N1,判断△M1FN1的形状,并证明你的结论.
⑷对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请法度出这条直线m的解析式;如果没有,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?

已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.

(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

已知直线l经过正方形ABCD的顶点A,过点C作CE垂直直线l于点E,连接BE

(1)如图1,CE+AE=______BE,并说明理由.
(2)如图2,将直线l绕着点A,逆时针旋转到如图位置时,请判断(1)的结论是否成立,若成立请证明;若不成立,写出你认为正确的结论,并说明理由.
(3)如图3,将直线l绕着A,逆时针旋转到如图位置时,请直接写出线段BE、AE、CE三者数量关系,不必证明。

某商店购进一批单价为40元的纪念品,如果按每件50元出售,那么每天可销售200件,经市场调研发现,纪念品的销售单价每上涨1元,其销售量每天减少5件,如果每件纪念品的利润不超过50%,设纪念品的销售单价上涨x元,每天所获利润为y元.
(1)求y与x之间的函数关系式.
(2)将纪念品销售单价定为多少,才能使每天所获销售利润最大?最大利润是多少?

如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点F.

(1)判断AF与⊙O的位置关系,并说明理由.
(2)若OC=CF,AB=12,求CD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号