游客
题文

如图,在直角坐标系中,梯形ABCD的底边ABx轴上,底边CD的端点Dy轴上.直线CB的表达式为y=-x+,点AD的坐标分别为(-4,0),(0,4).动点PA点出发,在AB上匀速运行.动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P运动t(秒)时,△OPQ的面积为s(不能构成△OPQ的动点除外).
(1)求出点BC的坐标;
(2)求st变化的函数关系式;
(3)当t为何值时s有最大值?并求出最大值.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.

用含x的代数式表示AC+CE的长
请问点C满足什么条件时,AC+CE的值最小?
根据(2)中的规律和结论,请构图求出代数式的最小值.

如图,正方形OABC的面积为9,点O为坐标原点,点B在函数(k>0,x>0)的图象上,点P(m、n)是函数(k>0,x>0)图象上的一个动点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设两个四边形OEPF和OABC不重合部分的面积之和为S.


求B点坐标和k的值
当S=时,求点P的坐标

已知:如图,△OPQ是边长为2的等边三角形,反比例函数的图象过P点;

求P点和Q点的坐标
求反比例函数的解析式.

已知,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号